On the logarithmic comparison theorem for integrable logarithmic connections

نویسنده

  • F. J. Calderón
چکیده

LetX be a complex analytic manifold, D ⊂ X a Koszul free divisor with jacobian ideal of linear type (e.g. a locally quasi-homogeneous free divisor), j : U = X −D →֒ X the corresponding open inclusion, E an integrable logarithmic connection with respect to D and L the local system of the horizontal sections of E on U . In this paper we prove that the canonical morphisms ΩX(logD)(E(kD)) −→ Rj∗L, j!L −→ Ω • X(logD)(E(−kD)) are locally isomorphisms in the derived category of sheaves of complex vector spaces for k ≫ 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearity conditions on the Jacobian ideal and logarithmic–meromorphic comparison for free divisors

In this paper we survey the role of D-module theory in the comparison between logarithmic and meromorphic de Rham complexes of integrable logarithmic connections with respect to free divisors, and we present some new linearity conditions on the Jacobian ideal which arise in this setting. MSC: 32C38; 14F40; 32S40

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Logarithmic Comparison Theorem versus Gauss–manin System for Isolated Singularities

For quasihomogeneous isolated hypersurface singularities, the logarithmic comparison theorem has been characterized explicitly by Holland and Mond. In the nonquasihomogeneous case, we give a necessary condition for the logarithmic comparison theorem in terms of the Gauss–Manin system of the singularity. It shows in particular that the logarithmic comparison theorem can hold for a nonquasihomoge...

متن کامل

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

Perturbed Logarithmic CFT and Integrable Models

Perturbation of logarithmic conformal field theories is investigated using Zamolodchikov’s method. We derive conditions for the perturbing operator, such that the perturbed model be integrable. We also consider an example where integrable models arise out of perturbation of known logarithmic conformal field theories.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006